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LIQUID CRYSTALS, 1990, VOL. 8, No. 1, 47-61 

A quasichemical lattice model for a binary mixture of 
hard rectangular parallelepipeds 

Application to systems composed of nematic 
and non-mesogenic molecules 

by E. P. SOKOLOVA and A. Yu. VLASOV 
Institute of Chemistry, Leningrad State University, Universitetsky prosp., 

2 Leningrad 198904, U.S.S.R. 

(Received 9 October 1989; accepted 28 December 1 9 8 9 )  

The hole lattice model of rectangular parallelepipeds is presented to describe 
the structural and excess thermodynamic properties of nematic-non-mesogenic 
mixtures. The molecular attractions are taken into account within the quasi-chemical 
approximation. A procedure for evaluating model parameters from data on the 
thermodynamic characteristics of pure components and the activity coefficients of 
the non-mesogen at infinite dilution at the nematic-isotropic transition temperature 
of the mesomorphic component is proposed. The mixing functions (enthalpy 
and volume), activity coefficient of the non-mesogen and the order parameters 
of the components are calculated at  a molecular level for systems composed of 
4-methoxybenzylidene-4’-propylaniline and a non-mesogen (tetrachlormethane, 
benzene and n-heptane). The calculated results are in quite good agreement with 
experiment in the temperature range from 319.2 to 3354K. 

1. Introduction 
In recent years mixtures of nematogens and non-mesogens have been actively 

studied in connection with their considerable practical importance since small 
amounts of non-mesogens are frequently added to nematogentic mixtures used in 
liquid crystal displays. It is of interest to investigate the concentration dependence of 
mesomorphic mixture properties not only from the viewpoint of their applications but 
also from that of fundamental studies in the field of molecular interactions. 

Due to the complexity of condensed anisotropic systems a statistical mechanical 
treatment of realistic models for nematic mixtures is not feasible. It is possible to 
investigate the orientational properties of these systems using a variety of idealized 
statistical approaches [I]. Among these models the generalized van der Waals approach 
would seem to treat both anisotropic hard core repulsions and angle dependent 
attractions in the most explicit manner [2,3]. The weakness of the van der Waals 
theory, as presently formulated, is the neglect of multiple centres of attraction and the 
flexibility of the terminal molecular chains. Using a translational and orientational 
continuum model it is difficult to account for the lower than cylindrical symmetry of 
the molecules and the short range order due to attractive interparticle interactions. 

These difficulties can be overcome in the lattice model offering a plausible frame 
within which some of these effects may be examined in a crude but simple way. Most 
of the existing models utilize Flory-Di Marzio statistics. To date it is known that the 
lattice approach for rigid rod-like particles appeared to be of little use when considering 
the properties at the nematic-isotropic transition in single component systems [4]. 
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48 E. P. Sokolova and A. Yu. Vlasov 

The lattice models are shown, however, to be useful for the investigation of solutions 
with non-mesomorphic and nematic solutes. These studies have been extended to 
mixtures of hard rods [4,5], and of hard rods and cubes [6], to rods with hard cores 
and semiflexible tails [I. 

During the past 15 years the effect of molecular biaxiality has been intensively 
discussed (see, e.g., [8] and references therein). In the framework of the Flory-Di 
Marzio counting procedure Shih and Alben have examined the configurational 
statistics of plate-like molecules with dimensions r x w x 1 on a simple cubic lattice 
in an effort to gain insight into the influence of molecular shape upon the stability of 
both uniaxial and biaxial phases in nematic liquid crystals [9]. As we show in the 
Appendix, however, the counting method of Shih and Alben results in an equation 
of state, which is accurate only up to the second virial coefficient. 

The lattice approach was extended later to multicomponent athermal mixtures 
of hard rectangular parallelepipeds with dimensions fib, x AZk x A,, (here k denotes 
the index of component). The configurational partition function of such a system 
was evaluated by Mitra and Allnatt [lo], who utilized the approach of Mayer full 
stars, and alternatively by Tumanjan and Sokolova in the framework of the Flory-Di 
Marzio probability methods [ I ] ,  121. As shown in [12], the corresponding trans- 
lational continuum model provided a description of the isotropic phase equation of 
state up to the third virial coefficient. The model developed in [ll, 121 explained some 
experimental trends in binary mesogen-non-mesogen systems with respect to the 
dependence on the shape and size of the solute particles [ 13,141 of:  (1) the reduced 
transition temperature depression, (2) the order parameters and (3) the solute activity 
coefficients in both phases. In addition, this approach proved to be successful in 
studying the influence of molecular biaxiality on the phase equilibria in binary liquid 
crystal mixtures [15]. 

In the present paper the lattice approach is applied to a binary nematic mixture 
of hard rectangular parallelepipeds with attractive interactions treated in the quasi- 
chemical Bethe-Guggenheim-Barker approximation. This treatment was extended in 
earlier work only to systems of hard uniaxial rods with dimensions r x 1 x 1 
[5 ,  16,171, the numerical results obtained in [17] relating to two component systems 
of chemically homogeneous particles. The present work generalizes the analysis in so 
far as we discuss binary systems of rigid parallelepipeds with nematic order. More- 
over, we treat numerically systems of energetically inhomogeneous particles. The 
mixture volumes are also accountable inasmuch as the presence of vacant sites on a 
lattice is assumed. The lattice approach, however, is relevant for the estimation of the 
excess thermodynamic functions rather than their nematic-isotropic transitional 
properties. The information on the mixing functions can essentially extend the possi- 
bilities of testing statistical mechanic considerations of molecular interactions in 
anisotropic solutions. To date there have been no reports on the predictions of 
thermodynamic mixing functions in binary systems with nematic liquid-crystalline 
components. The paper contains a comparison of such predictions with experimental 
data for three binary solutions composed of 4-methoxybenzylidene-4’-propylaniline 
(MBPA) and a non-mesogen (benzene, tetrachlormethane or n-heptane). The model 
is presented in 92. In 93 the counting scheme and the procedure used to select the 
model parameters are discussed. In 94 the results of model calculations are compared 
with the experimental data on the nematic-isotropic transition temperatures of the 
solutions, heats of mixing and the activity coefficients of the non-mesomorphic 
solutes. 
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Model fo r  a mixture of nematic and non-mesogenic molecules 49 

2. The model 
In the present study a simple cubic lattice model with attractive forces is extended 

to binary nematic mixtures composed of hard biaxial particles. M is the total number 
of lattice cells, each having a volume Av equal to y’. The system consists of {&} 
( I  = 1,2) molecules each with the symmetry of a rectangular parallelepiped, the 
principal axes of particles being directed along axes x, y,  z of the quasilattice frame. 
A particle of the Ith sort has dimensions A , ,  x A,, x A3, ,  the limits A , ,  > A>,  = A,, 
and A , ,  < A, ,  = A3,  correspond to rod and plate, respectively. Each particle occupies 
L, = A , ,  x A,, x A,,  sites on the lattice, and so its molecular volume is v, = 

L, - Av. No cells of the lattice are vacant, i.e. 
2 

M = No + C L,&. 
I =  I 

In the general case A , ,  # A,, # A,, ,  i.e. the particles do not have axial symmetry. In 
the lattice under consideration each particle can adopt six distinct orientations [ 181; 
Nu is the number of particles with orientation a. This index is assigned values from 
1 to 6 for the particles of the first sort and from 7 to 12 for the second sort; 

h I2 

Nu = Jv; and 2 N u  = Jv; 
n= I n = l  

The set of unit vectors el,, e,,, e,, lay along the edges A, , ,  A, , ,  A , ,  of the particle 
and the direction of the preferred orientation n be parallel to the z axis. Then a 
convenient procedure of labelling orientations can be adopted so that 

2i - I ,  2i (1 = I ) ,  

a = {  
i = 1, 2, 3, 

2i + 5 ,  2i + 6 ( I  = 2), 

if 1 n * e,,l = 1 .  Then for an axially symmetry nematic phase: s, = s;,-~, 1 = 2a, 
c1 = 1, . . . , 6, where s, = Nu/&. For a discrete orientational distribution of particles 
the long range order parameters [I91 for each component should be defined as 

( 1 )  I sy = 3s 61-5 - 

sy’ = 3s 61-3 - 

sj” = - s“’ - sy’. 

The configurational properties of the system are of primary interest in the study 
of the relative stabilities of phases and the excess thermodynamic functions of binary 
mixtures. The configurational partition function QrN,; for a system of { N , }  particles 
distributed on a lattice of M sites is given by 

where the summation is carried out over all values of the configurational energy with 
the most probable distribution { N , } .  The quantity g({  N , } ,  M )  in the number of 
configurations having equal energy; and C, Nu = N.  

I f  the interactions between molecules are determined only by steric repulsions, the 
term g ( { N n } ,  M )  equals the number of ways to arrange { N , }  indistinguishable 
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50 E. P. Sokolova and A. Yu. Vlasov 

particles on a lattice. For the latter we use [lo, 1 I] 
3 n (4 + B i ) ! ( &  + B123)! 

i =  I 
g({Nn}, M )  = I2 

where r t )  is the number of lattice cells within an edge constrained along the direction 
i (i = x ,  y ,  z) for a particle with orientation a. For the adopted way of labelling a it 
follows that: ‘ {I )  = A , , ,  r$ = A, , ,  r{” = A , , ,  ri4) = A , , ,  r$’) = A22 ,  r p )  = A 3 * .  The 
other elements of the array {rf)} are determined likewise. 

In accord with earlier studies [3,5,18,20] particles in each of the allowed orien- 
tations may be considered formally as different species. The repulsive contributions 
to the pressure and to the chemical potential of the particles having orientation a, are 
derived straightforwardly from (3) 

2 

I= I 

pFP/kT = 

where 

a; 

3 

d, = n (r$15 - I)/&, 
i =  I 

here p = C, L,JY;/M and ‘pI = L,JY;/& L,&; they are the density and volume 
fraction of the Ith kind of component, respectively. 

The first order approximation dealing with intermolecular attractions is the 
quasichemical or Bethe-Guggenheim-Barker approximation. In this framework the 
surface of each molecule is divided into contact sites, each of them having an area y 2 .  
In general a molecule is supposed to be energetically inhomogeneous, i.e. the contact 
sites have different energetic characteristics. The sites with the same characteristics 
form one class. Henceforth m denotes the class of contact sites. The area of all of the 
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Model for a mixture of nematic and non-mesogenic molecules 51 

contact sites orthogonal to a direction i is given by 

) 
I 2  

Ql = 2y2 .No + 1 Nur;)r:') , i # j # k.  

9, is the surface fraction of contact sites belonging to the class m and located on the 
particle with orientation a. (For vacancies it holds, formally, that 9, = 1 .) There are 
different contacts between sites of neighbouring particles along the direction i, namely 
mum,, mumS, m,mp,  m,lu, 00, Om,. For a number of contacts, N,!&, laying along 
direction i the constraint equations 

( u = l  

2Nur:J)r:k)8m = 2N;jrnn + 1 N,!&. (6) 

have to be obeyed. The left hand side of this equation is the number of contact sites 
of the mth class located on particles with orientation a orthogonally to an axis i .  The 
configurational energy of the system is taken to equal the sum of contributions from 
the nearest neighbour pairs of the contact sites 

N"' ) (7) 
1 

u .  = 1 1 (~mmmaN::rnm + 2 1 m,/# , 
1 I,.) '8 + ml 

where umal is the energy of interaction between the contact sites of the mth and Ith 
classes be(onging to particles with orientations a and f l ,  respectively. 

The quasichemical equilibrium of contact pairs is supposed to take place for each 
set of configurations with a given orientational distributions {Nu}. Thus for the sum 
on the right hand side of equation (2 )  it holds that 

Qh = g ( { N , } ,  {N::'g})exP(- U N / ~ T ) ,  (8) 
I NLh, ,  t 

where g({ N u } ,  { N,!&}) is the number of configurations with an equal energy for the 
given sets of { N u }  and {N,!&}. The value of g ( { N , } ,  {N:jIfl})  is estimated by use of 
equation (3) and by introducing the factors h, according to 

where 

the starred variables correspond to the equilibrium distribution of contact pairs in the 
athermal system, i.e. that with a random distribution of pairs. After use of equation 
(9) the maximum term approximation gives the estimate for the partition function in 
equation (8) 

3 

QL % gath n hiexp(- uN/kT),  (10) 
i =  I 

where with respect to the conditions in equation (6) it holds that 

(N::+,)2 = 4N,!$ , ,aN$~exp(-2w,a / f l /kT) .  ( 1  1) 

Here the variables w, I = urnart - (u,,,,, + uIflIb)/2 are the effective interchange 
energies for a contact pair involving sites of the designated classes. It holds also that U P  
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52 E. P. Sokolova and A. Yu. Vlasov 

worn, = - umm,, /2 .  The values w, I , u, , ,~, ,~ describe the interactions averaged over the 
ensemble of particles. These quaAhties should be evaluated from the thermodynamic 
data on the systems under investigation. 

In order to simplify the system of constraint equations (6) it is convenient to 
introduce the set of variables x:! 

where 

is the fraction of the total surface Qi of the particles orthogonal to direction i, 
occupied by the contact sites of the mth class, the sites being located on the particles 
having orientation a. 

We proceed now with the implicit assumption that the repulsive forces are the 
principal factor of nematic stability [3]. This assumption permits us to neglect the 
dependence of the variables and w, I upon the mutual orientations or particles. 
Then it holds that u, , ,~ , ,~  = u,,, w, , , ,~~  = wmI and 

where 

a 8  

(13) x ( J )  = . . . - - x(') 
mi  , i t s '  

1 = 61- 5, I =  1 , 2  

Equations (1 1) and (13) taking into account the constraint equations (6) in terms of 
variables give 

where 
. i f 5  

q,,, = exp(- w,,/kT),  A!: = Pi:) sUry)/sir$).  

In a phase with long range orientational ordering the quasichemical equations (14) 
have to be solved simultaneously with the condition of the equilibrium orientational 
arrangement of the molecules, the latter for a discrete set of orientations is given by 

where 

U = L  

= &+I)+;., I = 1, 2, A = 1, . . . , 6, (15) 

M / / k T  = - (8 In Q , v / a ~ K ) T . , v . ( . i ; + , ]  

is the chemical potential of the molecular species of the Ith type. Thus, for an axially 
symmetric nematic phase formed from a binary mixture of particles with lower than 
axial symmetry system of four equations 

P u  = P,+2 

pU = a = 61 - 5, 1 = 1, 2 
has to be obeyed. The compositions and densities of the nematic (pN) and isotropic 
(pl) phases in a mixture can be located by simultaneous solution of equations (16) 
with 

and the quasichemical equations (14) for each phase. The number of equations (14) 
is equal to the total number of classes of contact sites, including that of vacancies. 
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Model for a mixture of nematic and non-mesogenic molecules 53 

As to an axially symmetric nematic phase the quantity of such equations is doubled. 
The expressions for the chemical potential and for the pressure are given by 

3 r  1 

I 

P A v / k T  = PrCPAv/kT - 2 1 In z t ) ,  
I= I 

where $P and Prep are taken from equations (4) and (5). The summation over the 
index m includes only those classes of contact sites which belong to a molecule of the 
Ith sort. 

In so far as the lattice contains holes it  is possible to define the volume of mixing 
of solution as 

V M  = NAAv 1 L,x,(p-' - p ; ' ) ,  (20) 
I ,  I 

where p, is the density of the lth sort of component and x, is its mole fraction. 

equation (7), averaged over the ensemble of particles, reduces to 
Applying expressions (1 I)-( 13) the molar configurational internal energy in 

rn; n; V t n n w m n  9 (21) 1 i + 5  + 2 i { X A  [(lip - 1) + 1 sr/rY'] 11 X!&, 1 )  (;)A(i)AW 
i =  I p = i  n1.n 2 0 

where C, is the whole number of sites on the surface of the lth sort of molecule, 
A = 61 - 5. Expression (21) and the other thermodynamic quantities are obtained 
with the assumption that the effective interactions {urn,,,} are independent of tempera- 
ture. The activity coefficient of the non-mesogen and the molar mixing enthalpy may 
be obtained from 

Iny, = ( M ,  - M ; ) / k T  - Inx,, (22) 

H" = U M  + P V M ,  (23) 

U M  = u, - c x,u/, (24) 

where uI is the configurational internal energy of the pure substance of the Ith sort. 
The validity of the model is now tested in the next sections by comparing the 

present theoretical results with experiment. 

3. Evaluation of the parameters for the model 
3.1. Experimental 

The adjusting procedure described in 83.2 uses values of activity coefficients of 
non-mesogens, densities of the pure components and thermodynamic characteristics 
of the nematic-isotropic transition in MBPA. The information on the concentration 
dependence of the activity coefficient for the non-mesogenic component for the 
systems, listed in the introduction, was obtained by Peterson and Martire by means 
of a gravimetric technique [21]. The enthalpies of mixing were determined using a 
Calvet calorimeter [22], three temperatures for the study having been chosen from the 
range of those discussed in [21]. Two of them correspond to the stability of the 
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54 E. P. Sokolova and A. Yu. Vlasov 

nematic phase of pure MBPA ( T  = 319.5 and 326.4K) and the third ( T  = 335.3 K )  
to that of the isotropic phase. The transition characteristics, namely the temperature 
(TNI) and entropy (AZNI/R), were obtained using DSC. Their values are 
TNI = 333.4K, AZNl/R = 0.1465. The temperature dependence of the density for 
MBPA in the vicinity of transition (TNl f I5K) was determined with a bicapillary 
picnometer. The value of Si” at the transition was evaluated in an indirect way from 
comparison of plots of S[” and pN for the homologues series of Schiffs’ bases [23] and 
anizlidene-p-aminophenylalcanoates [24] which gave Sl’) = 0.375. 

3.2. Calculations 
The first stage of the calculations concerns adjusting the parameters describing 

interactions in pure MBPA (component I).  The distinct set of the contact sites classes 
for each molecular species implies a definite model of interactions between constituent 
fragments of the molecules. However, the model of attractions is ambiguous due to 
the complicated structure of the molecule. The present work deals with two assump- 
tions relating to the MBPA molecular structure. The first reflects a certain trend of 
MBPA towards correlation of the neighbouring dipole moments perpendicular to the 
molecular para axis. This assertion for Schiffs’ bases was made by Dunmur and Miller 
via estimate of the Kirkwood g factor components in terms of the extended Frohlich 
theory [25]. Because the MBPA molecule contains a system of conjugated bonds, the 
formal subdivision of the molecule into two classes of contact sites with equal surface 
fractions seems to be the simplest way to account for the dipole correlation. Thus, as 
a first assumption we have 9, = 9, = 0.5. The other approach treats the surface of 
the molecule as composed of two classes of contact sites, namely, those belonging to 
the conjugated aromatic fragment (labelled as class I )  and those corresponding to the 
terminal alkyl chains (class 2). Their surface fractions evaluated from Bondi’s table 
[26] are 9, = 0.61 and 9, = 0.39. 

Thus, the set of model parameters for pure MBPA can be presented at fixed 
T = T,, as the molecular volume v,, the axial ratios 11’) = A,l/J(,421,4,1), 
1;’) = A , , / A , , ,  the effective attraction parameters uII, u,,, wIz and the volume of the 
lattice cell A v .  The values v l  and 11’) are chosen to be the estimated volume and axial 
ratio of a MBPA molecule, namely 0.253 nm’ and 2.5 [26]. If the volume Av is kept 
fixed, then the other model parameters are estimated from solution of equations ( 1  6 )  
and (17) with the set of quasichemical variables given by equations (14). These 
parameters were determined such that the experimental data on p , ,  S:” and the 
entropy AX,, at the nematic-isotropic transition were reproduced. The value of Av 
was 3.75 x lo-’ nm’ in all of the calculations. It is to be noted, however, that there 
are uncertainties in the choice of Av as an input parameter. The chosen Av led to 
p A v / k T , , ,  which was the least in the series of calculations made with other values of 
Av (the difference between the values of Av was 0.25 x lo-’ nm’). From table I we 
see, however, that in both approximations the reduced pressure and the density 
change A p  = pN - p, are overestimated to a great extent; the experimental values of 
P A v / k T , ,  and Ap/p are 0.004 and 0.002, respectively. This shows the intrinsic short- 
comings of the lattice approximation. 

The second stage of the calculation deals with the estimation of the effective shapes 
of the non-mesogens molecules = A,,/, /(A,J,,),  1k2) = A2, /A3 , )  and the effective 
attractive parameters for molecules of the same sort and of MBPA and the non- 
mesogens. The shape of particles in terms with their chemical structure is ascribed 
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Model for a mixture of nematic and  non-mesogenic molecules 55 

Table 1 .  Model and transitional parameters of MBPA for different assumptions concerning 
the intermolecular attractions. 9, = Q2 = 0.5 (A), 9, = 0.61, 9, = 0.39 (B). ii,, = 
u,,/kTNl, GI2 = wl2/kTN,.  The experimental value of pI is 0.6176. A&l/R = 0.1364 in 
assumption B. The other transitional parameters are in the text. 

A 0. I676 0.0599 1.41 0.274 1.6 4.88 
B 0.1682 0.0772 - 1.35 0.279 1.3 4.80 

Table 2. Model parameters for the non-mesogen and the characteristics of attraction between 
the non-mesogen and MBPA. For CCI, the values in brackets correspond to approxi- 
mation B; v: were obtained from Bondi's table (261. 

Quantity CCI, n-C7H16 c6 H6 

1 ' 2 )  1 ( 1 )  3.18 0.70 
- ii]] x lo2 13.01 (17.89) 9.36 15.71 
G,, x lo2 3.62 (5.18) 7.2 1.75 
G*, x lo2 2.43 (5.07) 3.34 1.39 
v2 x 101/nml 89.1 (71.6) 131.6 91.0 
v: x 101/nml 82.7 130.9 80.2 

apriori. I t  means, that the molecules of benzene, n-heptane and tetrachlormethane a re  
approximated by plates, rods and cubes respectively, i.e. in all the cases = 1 .  
Molecules of the non-mesogen are assumed to be energetically homogeneous, the 
class of their contact sites in each binary system having the number 3, i.e. 9, = 1.  
Thus, the set of adjustable parameters contains u , ~ ,  w I 3 ,  ~ 2 3  and A:,). The values of the 
energetic characteristics for each binary system were estimated from the data on the 
densities of the pure non-mesogens [27] and their activity coefficients a t  infinite dilution 
in the coexisting phases of MBPA at T = TN, [21]. The  calculated parameters are 
summarized in table 2, where the results for the system MBPA-CCI, obtained with 
approximation B are also given. 

The proposed evaluation procedure ensures also the correct reproduction of the 
values for 

= - lim (d(T/TNI)/dx)('), ( j  = I ,  N), 
r] -0 

which are the limiting slopes of the lines (T,  x ~ ) ~  and (T,  x2)' bounding single phase 
regions in the phase diagram. This is the consequence of the thermodynamic relation 

= (R/ACNl)[?ffm(TNl) - r:.,(TNI)l/?~.?.(TNI), (i # j ,  i , j  = N), 
where 

7i.L = exp[ l im(M2/kT - Inx,) - M:/~T].  
\ ?  -0 

4. Numerical predictions 

(I = I ,  2) as functions of composition at  T = 319.5, 326.1 and 335.3 K. Those 
quantities were calculated from equations ( I ) ,  (20) and  (22)-(24) via equations (14) 
and conditions (16). No additional fitting parameters were used to  those obtained 
from the data on the pure components and infinitely dilute solutions. 

The adjusted model parameters were used to calculate HM, V M ,  y 2 ,  S ,  ( 1 )  , S"' 
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0 008 0.16 X2 

0 0.08 0.16 X2 

o'low T I 

1 
0.04 008 0.12 0.16 X2 

Figure I .  Activity coefficients of n-heptane (a), carbon tetrachloride (b) and benzene (c) as 
functions of the non-mesogen mole fraction in binary mixtures with MBPA at ,  
T = 319.5K (l), 326.1 K (2) and 3 3 5 3 K  (3). The full lines are the results of the 
calculations with approximation A, the dashed lines refer to approximation B, the 
dash-dot curves present the experimental results [21]. The vertical lines are the boundaries 
of the nematic-isotropic equilibria. 

The calculated and experimental results for lgy, versus x, are shown in figure 1, 
for three fixed temperatures. We note that the temperature trend of y2 and the 
calculated discontinuities lgyy - lgy: at the phase boundaries fit the experimental 
data satisfactorily. It is to be noted estimate of the difference Ig y," - lg 7: carried out 
in the athermal systems composed of linear r-mers [4] lead to essential discrepancies 
with experiment. 

We find good agreement between the mixing enthalpies calculated theoretically 
and the experiment for mixtures of MBPA with n-heptane and carbon tetrachloride 
(see figures 2 and 3), including the temperature trend of HM. The predictions for the 
system MBPA-benzene are worse (see figure 4), which may be ascribed to a weak 
association of benzene molecules. In all of the systems the model was unable to 
reproduce a weak change of curvature of HM in the nematic region. The overestimate 
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HM/k Jm 

'.a 0.92 096 1 XI 

Figure 2. The mixing enthalpies versus the mole fraction x, in the binary system MBPA- 
n-heptane. The other notation is the same as in figure 1 .  The experiment is that of [22]. 

HYkJmoi' 

HM 1 

0.6 
XI 

0 0.2 

HM 1 

Figure 3 .  The mixing enthalpies as functions of x, in the system MBPA-CCI,. The notation 
is that from figure 1 .  
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Figure 4. The mixing enthalpies versus the mole fraction x, in the system MBPA-benzene. 
The notation is that of figure I .  

0.4 

0.02 0.06 
0.02 0.06 - 0 2  0.02 0.06 

x2 x2 
Figure 5. The calculated order parameters of the components as a function of the non-rnesogen 

mole fraction in the mixtures composed of MBPA and n-heptane (a), carbon tetrachloride 
(b)  and benzene (c) at T = 319.5K (1) and 326.1 K (2). The full lines correspond to 
MBPA and the dash-dot lines refer to the non-mesogen. All of the results were obtained 
with approximation A. 

of the difference between HM at the boundary points of the biphasic region is 
presumably connected with the overestimate of  the density change at  the nematic- 
isotropic transition in the pure nematic. 

The calculated order parameters for MBPA and the non-mesogen are plotted in 
figure 5. The value of S{” for MBPA is found to be constant on the line (T ,  xN), where 
the isotropic phase first appears on heating. Experimentally this behaviour of Sl” is 
observed in a number of nematic mixtures composed of 4-methoxybenzyliden-4’-n- 
butylaniline and  non-mesomorphic compounds [28]. Functions of Sl” and Si2’ versus 
T = T / T N ( x 2 )  for benzene are shown in figure 6 together with the experimental values 
of those for p-difluorobenzene dissolved in 4-ethoxybenzyliden-4’-n-butylaniline 
[29]. In this mixture Sj2’ # Si2’/2 which is due to the lower than axial symmetry of 
C,H4F,. The results of the present work as well as the experimental data of [29] 
suggest a universal character for the dependence of S,@)(T*) on temperature for 
non-polar non-mesogens in Schiffs’ bases. 

There are no experimental data for V M  in the systems under investigation, but 
we can point out that  under the condition T < T,, it holds that V M  > 0 and 
(dVM/dT),y  < 0. These inequalities are also found experimentally for the mixture 
MBBA-CCI4 [30]. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Model for a mixture of nematic and non-mesogenic molecules 59 

Figure 6. The order parameters of the non-mesogens as functions of the reduced temperature. 
The full lines correspond to the system MBPA within approximation A. The dash-dot 
curves present experimental data for the system EBBA-difluorobenzene [29]. 

The results of the calculation for the mixture MBPA-CCl, reveal also that the 
model parameters depend on an assumption concerning the contact sites for MBPA. 
Nevertheless the thermodynamic quantities are rather insensitive with respect to the 
choice of such an assumption. This seems to be a consequence of the crude account 
taken of the effective intermolecular attractions and repulsions, when the balance 
between them can be found by the proper choice of fitting parameters. 

In conclusion we should emphasize that the concentration dependence of the order 
parameters and excess thermodynamic properties were calculated with limited infor- 
mation on the characteristics of the pure components and the activity coefficients of 
the non-mesogens at infinite dilution. In the proposed version the quasichemical 
model of rectangular parallelepipeds permits us to describe the thermodynamic 
properties of nematic and isotropic phases for mixtures of nematic-non-mesogenic 
molecules in a physically reasonable way. 

The authors wish to thank Professor A. G. Morachevsky for many stimulating 
discussions and Dr. Tumanjan for help with equation (A4) of the Appendix. 

Appendix 
The model system consists of N square particles r x r on a square lattice of M sites 

and of volume V = MAv. Using the Alben counting scheme [9], the number of ways 
v (x  + 1) of adding the ( x  + 1)th particle to a lattice containing x such particles is 

where 
V ( X  + 1) = NoZ'{r-')Pf-')P[~-'y, (A 1) 

No = M - r2X, P, = No/(No + B,) ,  B, = B2 = rX, 

Pi, = No/(No + B12), BIZ = A'- 
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The expression for the number of distinct ways of adding N particles is 

(A 2) 
By straightforward manipulation from expressions (2), where in this case a = 2, and 
equation (A 2) we obtain the pressure of the lattice system as  

PAvlkT = In 1 - p + p/r2 + -In 2 1 - p + p/r + +In(l - p + $), 
1 - P  r 1 - p + p / r 2  r + r  

where 

The continuum translation model can be obtained by taking the limit Av -+ 0 in 
equation (A 3) and holding p constant. Thus the continuum limit gives 

2 3 
P 1 - P  

PVINkT = -In(l - p)  + - = 1 + 2 p  + +p2 + . . . . (A4) 

After the comparison of the virial coefficient in this P ( p )  series with their exact values 
(B2 = 2, B, = 3 [31]) we can see that the Alben approach provides an accurate 
equation of state up to  the second virial coefficient B,. 
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